We developed a tropical forest vulnerability index (TFVI) to detect and evaluate the vulnerability of global tropical forests to threats across space and time. Four decades of satellite data show widespread vulnerability across the tropics, while the response of rainforests to heat and drying varies across the continents. The early warning from the index can identify regions for conservation and restoration.
In this paper, we assess the use and quality of forest monitoring data sources for national reporting to the FRA in 236 countries and territories. More specifically, we analyze the use of remote sensing and for forest monitoring in FRA 2005–2020, assess data quality in FRA 2020 using FAO tier-based indicators, and zoom in to investigate changes in tropical forest monitoring capacities in FRA 2010–2020.
Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default aboveground net biomass change (∆AGB) rates. As part of the 2019 Refinement to these guidelines, we provide a rigorous and traceable updates of the IPCC 2006 default rates in tropical and subtropical ecological zones. This study is an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy and our new rates can be used for large‐scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.
Assessing the performance of REDD+ efforts requires data on forest cover change. Innovations in remote sensing and forest monitoring provide ever-increasing levels of coverage, spatial and temporal detail, and accuracy. In this paper we analyse (1) differences in accuracy between datasets of forest cover change; (2) if and how combinations of datasets can increase accuracy; and we demonstrate (3) the effect of (not) doing accuracy assessments for REDD+ performance measurements.
Greenhouse gas emissions reduction from the land use sector requires that accurate, consistent and comparable datasets are available for transparent reference and progress monitoring. Through an online survey, we investigated stakeholders’ data needs for estimating forest area and change, forest biomass and emission factors, and AFOLU GHG emissions. Our results show that current open and freely available datasets and portals are only able to fulfil stakeholder needs to a certain degree. We also identify key elements for increasing overall transparency of data sources, definitions and methodologies.